Αρχική / Θετικές Επιστήμες / Μαθηματικά / Άλγεβρα / Topics in Groups and Geometry

Topics in Groups and Geometry

ΣΥΓΓΡΑΦΕΙΣ
Τιμή
47,70 €
90,10 € -47%
Διαθέσιμο κατόπιν παραγγελίας
Αποστέλλεται σε 15 - 25 ημέρες. Υπό την προϋπόθεση ύπαρξης αποθέματος στον προμηθευτή.

Προσθήκη στα αγαπημένα

Δωρεάν μεταφορικά

This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today.The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem.

The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.

Συγγραφείς: Ceccherini-Silberstein Tullio, D'Adderio Michele
Εκδότης: SPRINGER
Σελίδες: 464
ISBN: 9783030881115
Εξώφυλλο: Μαλακό Εξώφυλλο
Αριθμός Έκδοσης: 1
Έτος έκδοσης: 2021

- Foreword.- Preface.- Part I Algebraic Theory: 1. Free Groups.- 2. Nilpotent Groups.- 3. Residual Finiteness and the Zassenhaus Filtration.- 4. Solvable Groups.- 5. Polycyclic Groups.- 6. The Burnside Problem.- Part II Geometric Theory: 7. Finitely Generated Groups and Their Growth Functions.- 8. Hyperbolic Plane Geometry and the Tits Alternative.- 9. Topological Groups, Lie Groups, and Hilbert Fifth Problem.- 10. Dimension Theory.- 11. Ultrafilters, Ultraproducts, Ultrapowers, and Asymptotic Cones.- 12. Gromov’s Theorem.- Part III Analytic and Probabilistic Theory: 13. The Theorems of Polya and Varopoulos.- 14. Amenability, Isoperimetric Profile, and Følner Functions.- 15. Solutions or Hints to Selected Exercises.- References.- Subject Index.- Index of Authors.

Tullio Ceccherini-Silberstein, Università degli Studi del Sannio Dipartimento di Ingegneria, Benevento, Italy

Michele D'Adderio, Université Libre de Bruxelles, Bruxelles, Belgium

Σας προτείνουμε

Newsletter

Εγγραφείτε στο newsletter για να λαμβάνετε πρώτοι τις νέες κυκλοφορίες και τις προσφορές μας
Ο λογαριασμός σας Τα αγαπημένας σας